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Abstract. Due to the proliferation of location-based services and IoT
devices, a lot of spatial points are being generated. Spatial data analysis
is well known to be an important task. As spatial data analysis tools,
graphs consisting of spatial points, where each point has edges to its
nearby points and the weight of each edge is the distance between the
corresponding points, have been receiving much attention. We focus on
triangles (one of the simplest sub-graph patterns) in such graphs and
address the problem of retrieving the top-k weighted spatial triangles.
This problem has important real-life applications, e.g., group search, ur-
ban planning, and co-location pattern mining. However, this problem is
computationally challenging, because the number of triangles in a graph
is generally huge and enumerating all of them is not feasible. To solve
this challenge, we propose an efficient algorithm that returns the exact
result. Our experimental results on real datasets show the efficiency of
our algorithm.

Keywords: Spatial points · Weighted graph · Top-k retrieval.

1 Introduction

Due to the proliferation of location-based services and IoT devices, a lot of spatial
(or geo-location) points are being generated nowadays. Analyzing such spatial
points yields useful observations. Many spatial point processing techniques [1–4,
9] and systems [10, 13, 15] have therefore been devised. Recently, as spatial point
analysis tools, graph-based approaches have been receiving attention [6, 14, 16].

Given a set P of spatial points and a distance threshold r, a spatial neighbor
graph of P consists of a set of vertices that correspond to points in P and a set of
edges where an edge is created between two points iff the distance between them
is not larger than r and the weight of this edge is the distance. Graph-based
structures provide intuitive relationships between spatial points, so techniques
that mine some patterns (i.e., sub-graphs) from spatial neighbor graphs are
often required. Triangles are particularly considered in graph contexts, because
triangle is one of the simplest yet important primitive sub-graph patterns (e.g.,
clique) having many applications [8, 11]. For example, spatial triangles can be
utilized in group search [7], co-location pattern mining [16], and urban planning
[6]. Note that the number of triangles in a spatial neighbor graph is generally
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huge. Enumerating all of them is therefore not feasible, and the output size
should be controllable (by a user-specified parameter k) [8]. In spatial databases,
given a subset of points in P (e.g., that form triangles), the cohesiveness of the
subset is a factor in measuring its importance [16].

Motivated by the above applications and observations, this paper addresses
the problem of retrieving the top-k weighted spatial triangles. The weight of the
triangle formed by points px, py, and pz is defined as dist(px, py)+dist(py, pz)+
dist(px, pzy), where dist(·, ·) measures the Euclidean distance between two points,
which takes into account the cohesiveness. Then, given P and the output size
k, this problem retrieves k spatial triangles with the minimum weight among
all triangles in the spatial neighbor graph of P . This problem is computation-
ally challenging, as seen below. A straightforward solution for this problem is to
enumerate all triangles and then output k triangles with the minimum weight.
The number of triangles in the spatial neighbor graph is O(

(
n
2

)
), where n = |P |,

so this solution is not feasible. To alleviate this computational cost, we can use
DHL [8], which is a heuristic algorithm and was proposed originally for graph
databases. DHL assumes that edges are sorted by weights, and it greedily ac-
cesses the edges in this order, so as to avoid enumerating triangles with large
weights. However, to employ DHL, we face substantial time incurred by building
a spatial neighbor graph of P and sorting a large amount of edges.

To solve the above issues, we propose an efficient algorithm that returns
the exact answer. We find an observation that a subset of the spatial neighbor
graph, which usually contains the top-k weighted triangles, can be built offline.
Besides, from this partial graph, for each point p ∈ P , we can enumerate a
triangle having p with a small weight in O(1) time offline. These n triangles
provide a tight threshold for the top-k result, which helps filter unnecessary
points and triangles, resulting in improvement of online computation. Thanks
to these observations, our algorithm does not need to correctly build the spatial
graph and sort all edges. To summarize, our main contributions are as follows:

– We address the problem of retrieving the top-k weighted spatial triangles. To
our knowledge, we are the first to tackle this problem in spatial databases.

– We propose a simple, efficient, and exact solution for this problem.
– We conduct experiments on real datasets, and the results show that our

solution for static data is up to three orders of magnitude faster than a
baseline algorithm.

2 Preliminary

Let P be a set of spatial (or geo-location) points in a Euclidean space. A spatial
point p ∈ P has 2-dimensional coordinates ∈ R2. We use dist(p, p′) to denote
the Euclidean distance between p and p′. We assume that P is memory resident.

Given a distance threshold r, where r is a tolerable distance between points to
regard them as being located close to each other, we can build a spatial neighbor
graph of P defined below:
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Definition 1 (Spatial neighbor graph). Given a set P of points and a dis-
tance threshold r, the spatial neighbor graph of P is an undirected graph consist-
ing of a set of vertices that correspond to the points in P and a set of edges where
an edge is created between pi and pj iff dist(pi, pj) ≤ r. The edge between pi and
pj is represented as ei,j and has a weight w(ei,j) where w(ei,j) = dist(pi, pj).

In the spatial neighbor graph, there are triangles consisting of three points fully
connected to each other. We define their weight:

Definition 2 (Weight of a triangle). Given a triangle △x,y,z consisting of
three points px, py, and pz, the weight of this triangle, w(△x,y,z), is:

w(△x,y,z) = dist(px, py) + dist(py, pz) + dist(px, pz). (1)

Then, our problem in Section 3 is defined as follows:

Definition 3 (Top-k weighted triangle retrieval problem). Given a
set P of points, an output size k, and a distance threshold r, this problem is to
retrieve at most k triangles in the spatial neighbor graph of P with the minimum
weight1.

3 Our Solution

Main idea. To efficiently retrieve k triangles with the minimum weight, it is
desirable to prune points that do not contribute to the top-k result. Assume that
triangle △x,y,z is included in the top-k result. From Equation (1) and Definition
3, it is intuitively seen that, for px, edges ex,y and ex,z would be (two of) the
t nearest neighbors (t-NNs) of px, where t is a small constant. This suggests
that the top-k triangles can be retrieved from the t-NN graph and that correct
building of the spatial neighbor graph of P is not necessary.

This idea brings an important advantage: the spatial neighbor graph of P
needs to be built online (since it depends on r), whereas the t-NN graph of P
can be built offline (for t = O(1)). Furthermore, if we have the t-NN graph of P ,
for each p ∈ P , we can enumerate a promising triangle having p, i.e., the triangle
formed by p and its 2 nearest neighbors, in the same offline step. Even if these
triangles are not included in the top-k result, they usually have small weights,
yielding a tight threshold for online computation in practice. This threshold
helps prune unnecessary points (and thus triangles), so the above ideas improve
the efficiency of online computation.

Our algorithm is designed based on the above ideas and consists of a one-time
offline computation and online computation. In the next subsections, we present
how to prepare these triangles and how to compute the exact top-k result in
detail.

1 When r is too small, the spatial neighbor graph of P can be very sparse and there
may be less than k triangles in the graph. In this case, this problem is easily solved,
thus we assume that r is reasonably specified and there are many triangles in the
graph.
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Offline processing. The objectives of this offline processing are to (i) build a
B-NN graph of P , where B ≥ 3 is a batch size, and (ii) enumerate triangles with
small weights. The batch size B is tuned empirically. We use p.E to denote the
set of edges held by a point p ∈ P .

Given P and B, for each px ∈ P , we compute the B-NNs of px in P\{px} by
using a kd-tree [5]. The B-NNs are maintained in p.E and sorted in ascending
order of weight (i.e., distance). Moreover, for each px ∈ P , we compute the
triangle △x,y,z, where py and pz are respectively the NN and 2-NN of px. This
triangle is maintained in T , so T has at most n triangles (we remove duplicated
triangles). Last, we sort the triangles in T in ascending order of weight.
Remark. The kd-tree of P is built in O(n log n) time. For a fixed B (i.e., B =
O(1)), the B-NNs of px ∈ P are retrieved in O(Bn1−1/d) = O(

√
n) time [12].

We can therefore build the B-NN graph in O(n1.5) time. Last, sorting triangles
in T needs O(n log n) time. Our offline algorithm hence needs O(n1.5) time.

Building the spatial neighbor graph of P incurs O(n(
√
n+savg)) time, where

savg is the average number of edges held by each point. Compared with this,
our offline algorithm is cheaper, and it is general to any k and r. We exploit
the B-NN graph of P and the set T of triangles to efficiently retrieve the top-k
weighted spatial triangles.
Online processing. To efficiently retrieve the top-k weighted spatial triangles,
we consider edge access order. Let τ be an intermediate threshold of the top-k
result (i.e., the weight of the intermediate top k-th triangle). From τ and triangle
inequality, for any edges, we can obtain a weight θ that has to be satisfied to form
the top-k weighted spatial triangles. That is, any triangles that have edges with
weights larger than θ do not have to be enumerated. We exploit this observation
along with the triangles in T and the B-NN graph obtained offline.

Let Pcand be the set of points that may form top-k triangles, and Pcand = P
at initialization. Our online algorithm has the following steps:

1. We first initialize the top-k result R and the threshold τ from the n tri-
angles obtained offline in Determine-Threshold(Pcand, r). Then, from τ ,
we compute a threshold θ for edges. As seen later, any edges with weights
larger than θ cannot form top-k triangles.

2. (If necessary, we update the B-NN graph by increasing B.) In Reduce-
Candidates(Pcand, i, θ), we remove points with no edges satisfying θ any
more from Pcand.

3. For each point in Pcand, we additionally enumerate triangles that could be
in the top-k result and update R if necessary.

4. We repeat steps 2 and 3 until we have Pcand = ∅, and then R is returned.

Below, we detail steps 1, 2, and 3.
• Step 1. Recall that T is a sorted set of triangles obtained offline. Each triangle
in T is formed by a point p, its NN, and 2-NN. (We remove all triangles in T that
have edges with weights larger than r.) In Determine-Threshold(Pcand, r),
we initialize R by the first k triangles in T , and τ is the weight of the k-th
triangle. Let △x,y,z be the k-th triangle. We set the threshold θ for edges as
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follows:

θ = τ −max{dist(px, py), dist(py, pz), dist(px, pz)}. (2)

This is used in the next step.
• Step 2. We next filter unnecessary points in Pcand by using θ. Let pxj be the
j-th NN of px. Consider the i-th iteration of Reduce-Candidates(Pcand, i, θ).
For px ∈ Pcand, if w(ex,xi+2

) > θ, triangles including ex,xi+2
can be ignored.

(Recall that NN and 2-NN were considered in the offline processing.)

Proposition 1. For a point px ∈ Pcand, if w(ex,xi+2) > θ, any triangles that
have ex,xi+2 cannot be the top-k weighted spatial triangles.

Proof. Consider a triangle △x,xi+2,y. We have w(ex,xi+2) ≤ w(ex,y) + w(exi,y)
from triangle inequality. Equation (2) shows that θ is the sum of the weights of
two edges of the (intermediate) top k-th triangle. Therefore, if w(ex,xi+2

) > θ,
the weights of any triangles that have ex,xi+2

are larger than τ .

From this observation, we see that, if w(ex,xi+2
) > θ, all unseen triangles

having px do not have to be enumerated and px can be safely removed from
Pcand. Reduce-Candidates(Pcand, i, θ) does this point removal. (For a point
px ∈ Pcand, if we do not have ex,xi+2 , we update the B-NN graph by increasing
B before Reduce-Candidates(Pcand, i, θ).)

The triangles enumerated offline practically have small weights, as they are
based on NN and 2-NN. Therefore, τ and θ are tight even when i is small, and
we can effectively reduce the size of Pcand in early iterations.
• Step 3. After filtering unnecessary points in the above step, we enumerate tri-
angles that may become the top-k result in Enumerate-Triangles(Pcand, r, i).
Consider the i-th iteration of this step. For each px ∈ Pcand, we enumerate tri-
angles formed by px, pxi+2 , and pxj , where j ∈ [1, ..., i + 1], while updating the
top-k result R, τ , and θ.

W.r.t. pxj , we access it in order of px1 , ..., pxi+1 . Then, it is important to notice
that w(ex,xj

) + w(ex,xi+2
) monotonically increases. When we have w(ex,xj

) +
w(ex,xi+2

) ≥ τ , we see that triangles with these edges cannot be the top-k result,
thus we can stop enumerating triangles without losing correctness.
Analysis. We analyze the theoretical performance of our online algorithm. Step
1 needs O(1) time, since T is sorted offline. Consider the i-th iteration of step 2,
and let ni be the size of Pcand in this iteration. (Notice that ni is affected by k.)
In step 2, for each px ∈ Pcand, we check ex,xi+2 . It hence needs O(ni) time2. Next,
consider the i-th iteration of step 3. Let n′

i be the size of Pcand in this iteration.
Notice that n′

i ≤ ni, since step 2 reduces the size of Pcand. In step 3, for each
px ∈ Pcand, we enumerate triangles formed by px, pxi+2

, and pxj
. Although we

can early terminate this enumeration, its worst number is i+1. That is, we need
O(i) time for px, thus step 3 requires O(i · n′

i) time. Consequently, our online

algorithm needs O(
∑I

i=1(ni + i · n′
i)) time, where I is the number of iterations

of step 3.

2 When we need to update the B-NN graph, we need O(ni
√
n) additional time.



6 R. Taniguchi et al.

4 Experiment

This section introduces our experimental results. All experiments were conducted
on a machine with 3.6GHz Intel Core i9-9900K CPU and 128GB RAM. In addi-
tion, all algorithms tested were single threaded and compiled by g++ 9.3.0 with
-O3 flag.

We compared it with DHL [8], which can compute the exact answer from the
spatial neighbor graph of P . For DHL, we used the original implementation3.
Dataset. We used two real datasets, CaStreet4 and Places5. CaStreet consists
of the minimum bounding rectangles of road segments in the U.S.A. We used
bottom-left and upper-right points, and its cardinality is 4,499,454. Places con-
sists of the geo-locations of public places in the U.S.A, and its cardinality is
9,356,750.
Parameter. We set n = 1, 000, 000 (via random sampling) and k = 100 by
default. In all experiments, r = 0.01 (and it did not affect the performance of
our algorithm). We set B = 10.
Impact of k. Next, we investigate the impact of the result size k, and Fig. 1
shows our experimental result. Our algorithm is significantly faster than DHL.
For example, when k = 100, our algorithm is 2021 and 1465 times faster than
DHL on CaStreet and Places, respectively. DHL suffers from the overhead cost
incurred by dealing with the spatial neighbor graph (while we do not have this
drawback.)

It can be also observed that the tendency of our algorithm is different between
CaStreet and Places. We found that Places is denser than CaStreet. Due to this
feature, compared with CaStreet case, our algorithm needed to enumerate more
triangles and update the top-k result more frequently on Places. However, it still
returns the result in 1.13 [sec] even when k = 1000. Recall that it needed 0.16
[sec] when k = 100. We therefore see that our algorithm scales linearly to k.
Impact of n. Fig. 2 studies the scalability of our algorithm to the cardinality of
dataset n. Our algorithm has a linear scalability to n, while DHL is superlinear
w.r.t. n. This clarifies the advantage of our algorithm. When we used all points
of CaStreet and Places, our algorithm is 2807 and 6193 times faster than DHL
on CaStreet and Places, respectively.

5 Conclusion

The number of location-based services is increasing, and a lot of spatial points
are being generated nowadays. This fact strengths the importance of analyzing
spatial points, and much efforts have been made to devise techniques for spatial
point analysis.

As a spatial point analysis tool, we proposed the problem of retrieving the
top-k weighted spatial triangles. Because the number of triangles in a set of

3 https://github.com/raunakkmr/Retrieving-top-weighted-triangles-in-graphs
4 http://chorochronos.datastories.org/?q=node/59
5 https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces
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Fig. 2. Impact of cardinality of dataset

spatial points can be huge, simply enumerating triangles is time-consuming.
To avoid this issue, we proposed an efficient algorithm that returns the exact
answer. We conducted experiments on real datasets, and the results demonstrate
the efficiencies of our solution.
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